A New Isopropenyl Benzofuran-type Tetramer from Ligularia stenocephala

Fu Lin YAN, Ai Xia WANG, Zhong Jian JIA*, Lei HE

College of Chemistry and Chemical Engineering, National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract: A new isopropenyl benzofuran-type tetramer was isolated from the roots of *ligularia stenocephala* and its structure was established by spectroscopic methods.

Keywords: Compositae, Ligularia stenocephala, isopropenyl benzofuran-type tetramer.

Ligularia stenocephala has been used in traditional Chinese medicine¹. From the roots of this plant, a new isopropenyl benzofuran-type tetramer was isolated and named as stenocephalain **1**. This paper describes the structure elucidation of **1**.

Compound 1 , white powder, mp 174-175 °C, [α]_D^{23} -7 (c 1.0, CHCl₃). Its HREIMS showed $[M+Na]^+$ at m/z 895.3631 (calcd. 895.3664), corresponding to the molecular formula $C_{52}H_{56}O_{12}$. The IR (KBr) bands (1622, 1548, 1487 cm^{-1}) and UV absorptions (249 nm, 303 nm), displayed the typical of benzofuran ring. In the 1H and $^{13}CNMR$ data of compound 1 showed 8 methoxy groups (δ_H 3.80 \sim 3.90) at aromatic rings, two kinds of Ar-H (δ_H 6.64-6.70 and δ_H 6.78-6.96) in 1,4-relationship, 4 methyl groups (δ_H 0.75, 0.82, 1.04, 1.27) and a terminal double bond (δ_H 4.52, 5.57). EIMS

^{*}E-mail:jiazj@lzu.edu.cn

Fu Lin YAN et al.

gave a strong peak at m/z 219 (100) implied presence of a fragment of isopropyl dimethoxybenzofuran. In the HMBC spectrum of 1, the correlations of C-2' with H-1, H-3 and H-3'; C-2" with H-3, H-5, H-10 and H-3"; C-2" with H-5, H-7, H-11 and H-3"; C-2"" with H-7, H-9, H-12 and H-3"" were showed. All of these correlations showed a partial structure of 4, 6, 8-trimethyl-1-nonene, in which the C-2, C-4, C-6 and C-8 attached with C-2', C-2", C-2", C-2"" respectively. Therefore, the planar structure of compound 1 was confirmed.

No.	δ _C	HMQC ($\delta_{\rm H}$)	HMBC	No.	δ _C	HMQC	HMBC
1	115.3 t	H-1a (4.52)	Н-3	8'	149.1 s		H-3',4',
2	133.3 s	H-10 (5.57)	H-3',1,3	9'	120.6 s		H-3',4', 7'
3	46.9 t	H-3a(2.49 J=13.6Hz) H-3b(2.90 J=13.6Hz)	H-1,5,10	2"	161.7 s		H-3,5, 10,3"
4	40.1 s		H-3,5,10	3"	103.0 d	H-3" (5.93)	H-4"
5	52.0 t	H-5a (2.29 J=14.0Hz) H-5b (2.42 J=13.6Hz)	H-3,7,10, 11	8"	148.4 s		H-3",4",7"
6	39.6 s		H-5,7,11	9"	120.6 s		H-3",4",7"
7	53.7 t	H-7a (2.03 J=14.4Hz) H-7b (2.42 J=13.6Hz)	H-5,9,11, 12	2'''	162.1 s		H-5,7,113' "
8	36.0 s		Н-7,9,12	3""	102.7 d	H-3''' (5.86)	H-4'''
9	29.7 q	H-9 (1.27)	H-7,12	8'''	148.3 s		H-3'", 4''',7'''
10	20.2 q	H-10 (0.75)	Н-3,5	9'''	120.6 s		H-3''', 4''',7'''
11	20.5 q	H-11 (0.82)	Н-5,7	2""	163.9 s		H-7,9,123'
12	27.9 q	H-12 (1.04)	Н-7,9	3""	100.3 d	H-3"" (5.82)	H-4""
2'	156.4 s		H-1,3,3'	8""	148.6 s		H-3"", 4"",7""
3'	102.5 d	H-3' (6.20)	H-4'	9""	120.6 s		H-3"", 4"",7""

Table 1 ¹HNMR (400MHz), ¹³CNMR (100MHz) and DEPT data of $\mathbf{1}^*$

 $\delta_{\rm H}$ 6.64 -6.70 (H-4'~H-4''''), $\delta_{\rm C}$ 101.7-102.1 (C-4'~C-4''''); $\delta_{\rm H}$ 6.78-6.96 (H-7'~H-7''''), $\delta_{\rm C}$ 94.8-95.2 (C-7'~C-7'''); $\delta_{\rm C}$ 56.0-56.3 (OCH₃); $\delta_{\rm C}$ 145.9-147.9 (C-5'~C-5''' and C-6'~C-6''''), the correlations of which with H-4'~H-4''',H-7'~H-7'''', respectively. * Assignments were confirmed by DEPT, HMQC and HMBC.

Acknowledgments

This work was suported by the National Natural Science Foundation of China (No. 29972017).

Reference

1. Z. R. Jiang. Journal of Shenyang College of Pharmacy, 1985, 2 (2), 173.

Received November 19, 2002